摘要:The time interval between two snapshots is referred to as the window size. A given longitudinal network can be analysed from various actor-level perspectives, such as exploring how actors change their degree centrality values or participation statistics over time. Determining the optimal window size for the analysis of a given longitudinal network from different actor-level perspectives is a well-researched network science problem. Many researchers have attempted to develop a solution to this problem by considering different approaches; however, to date, no comprehensive and well-acknowledged solution that can be applied to various longitudinal networks has been found. We propose a novel approach to this problem that involves determining the correct window size when a given longitudinal network is analysed from different actor-level perspectives. The approach is based on the concept of actor-level dynamicity, which captures variability in the structural behaviours of actors in a given longitudinal network. The approach is applied to four real-world, variable-sized longitudinal networks to determine their optimal window sizes. The optimal window length for each network, determined using the approach proposed in this paper, is further evaluated via time series and data mining methods to validate its optimality. Implications of this approach are discussed in this article.