首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Regulatory Compliant Tissue-Engineered Human Corneal Endothelial Grafts Restore Corneal Function of Rabbits with Bullous Keratopathy
  • 本地全文:下载
  • 作者:Gary S. L. Peh ; Heng-Pei Ang ; Chan N. Lwin
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-14723-z
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Corneal transplantation is the only treatment available to restore vision for individuals with blindness due to corneal endothelial dysfunction. However, severe shortage of available donor corneas remains a global challenge. Functional regulatory compliant tissue-engineered corneal endothelial graft substitute can alleviate this reliance on cadaveric corneal graft material. Here, isolated primary human corneal endothelial cells (CEnCs) propagated using a dual media approach refined towards regulatory compliance showed expression of markers indicative of the human corneal endothelium, and can be tissue-engineered onto thin corneal stromal carriers. Both cellular function and clinical adaptability was demonstrated in a pre-clinical rabbit model of bullous keratopathy using a tissue-engineered endothelial keratoplasty (TE-EK) approach, adapted from routine endothelial keratoplasty procedure for corneal transplantation in human patients. Cornea thickness of rabbits receiving TE-EK graft gradually reduced over the first two weeks, and completely recovered to a thickness of approximately 400 µm by the third week of transplantation, whereas corneas of control rabbits remained significantly thicker over 1,000 µm (p < 0.05) throughout the course of the study. This study showed convincing evidence of the adaptability of the propagated CEnCs and their functionality via a TE-EK approach, which holds great promises in translating the use of cultured CEnCs into the clinic.
国家哲学社会科学文献中心版权所有