首页    期刊浏览 2025年06月15日 星期日
登录注册

文章基本信息

  • 标题:Modeling cadmium-induced endothelial toxicity using human pluripotent stem cell-derived endothelial cells
  • 本地全文:下载
  • 作者:Ling Tang ; Jun Su ; Ping Liang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-13694-5
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Cadmium (Cd) is a harmful heavy metal that results in vascular diseases such as atherosclerosis. Prior evidence revealed that Cd induced endothelial cell (EC) death and dysfunction, supporting that ECs are a primary target of Cd-induced toxicity, and can cause severe pathologies of vascular diseases. However, the underlying mechanisms remain unclear. In this study, we investigated the mechanisms of Cd-induced endothelial toxicity in a human model system of H9 human pluripotent stem cell-derived endothelial cells (H9-ECs). We showed that H9-ECs were susceptible to CdCl2 induction, leading to detrimental changes of cell structure and significantly elevated level of apoptosis. We demonstrated that CdCl2-treated H9-ECs gave rise to a clear EC dysfunction phenotype and significantly differential transcriptomic profile. Signaling pathway analysis revealed that P38 or ERK signaling pathway is critical to cadmium-induced EC apoptosis and dysfunction, and inhibition of P38 or ERK effectively rescued CdCl2-induced endothelial toxicity in H9-ECs. Conclusively, hPSC-ECs can be a reliable model to recapitulate the EC pathological features and transcriptomic profile, which may provide a unique platform for understanding the cellular and molecular mechanisms of Cd-induced endothelial toxicity and for identifying therapeutic drugs for Cd-induced vascular diseases.
国家哲学社会科学文献中心版权所有