首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:Post-drought hydraulic recovery is accompanied by non-structural carbohydrate depletion in the stem wood of Norway spruce saplings
  • 本地全文:下载
  • 作者:Martina Tomasella ; Karl-Heinz Häberle ; Andrea Nardini
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/s41598-017-14645-w
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Hydraulic failure and carbon starvation are recognized as main causes of drought-induced forest decline. As water transport and carbon dynamics are strictly interdependent, it is necessary to clarify how dehydration-rehydration cycles are affecting the relations between stem embolism and non-structural carbohydrates (NSC). This is particularly needed for conifers whose embolism repair capability is still controversial. Potted Norway spruce saplings underwent two drought-re-irrigation cycles of same intensity, but performed in two consecutive summers. During the second cycle, stem percent loss of hydraulic conductivity (PLC) and NSC content showed no carry-over effects from the previous drought, indicating complete long-term recovery. The second drought treatment induced moderate PLC (20%) and did not affect total NSCs content, while starch was converted to soluble sugars in the bark. After one week of re-irrigation, PLC recovered to pre-stress values (0%) and NSCs were depleted, only in the wood, by about 30%. Our data suggest that spruce can repair xylem embolism and that, when water is newly available, NSCs stored in xylem parenchyma can be mobilized over short term to sustain respiration and/or for processes involved in xylem transport restoration. This, however, might imply dependency on sapwood NSC reserves for survival, especially if frequent drought spells occur.
国家哲学社会科学文献中心版权所有