首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Solar-mediated thermo-electrochemical oxidation of sodium dodecyl benzene sulfonate by modulating the effective oxidation potential and pathway for green remediation of wastewater
  • 本地全文:下载
  • 作者:Di Gu ; Simeng Gao ; TingTing Jiang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep44683
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:To match the relentless pursuit of three research hot points - efficient solar utilization, green and sustainable remediation of wastewater and advanced oxidation processes, solar-mediated thermo-electrochemical oxidation of surfactant was proposed and developed for green remediation of surfactant wastewater. The solar thermal electrochemical process (STEP), fully driven with solar energy to electric energy and heat and without an input of other energy, sustainably serves as efficient thermo-electrochemical oxidation of surfactant, exemplified by SDBS, in wastewater with the synergistic production of hydrogen. The electrooxidation-resistant surfactant is thermo-electrochemically oxidized to CO2 while hydrogen gas is generated by lowing effective oxidation potential and suppressing the oxidation activation energy originated from the combination of thermochemical and electrochemical effect. A clear conclusion on the mechanism of SDBS degradation can be proposed and discussed based on the theoretical analysis of electrochemical potential by quantum chemical method and experimental analysis of the CV, TG, GC, FT-IR, UV-vis, Fluorescence spectra and TOC. The degradation data provide a pilot for the treatment of SDBS wastewater that appears to occur via desulfonation followed by aromatic-ring opening. The solar thermal utilization that can initiate the desulfonation and activation of SDBS becomes one key step in the degradation process.
国家哲学社会科学文献中心版权所有