首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:The microbe-secreted isopeptide poly-γ-glutamic acid induces stress tolerance in Brassica napus L. seedlings by activating crosstalk between H2O2 and Ca2+
  • 本地全文:下载
  • 作者:Peng Lei ; Xiao Pang ; Xiaohai Feng
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep41618
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Poly-γ-glutamic acid (γ-PGA) is a microbe-secreted isopeptide that has been shown to promote growth and enhance stress tolerance in crops. However, its site of action and downstream signaling pathways are still unknown. In this study, we investigated γ-PGA-induced tolerance to salt and cold stresses in Brassica napus L. seedlings. Fluorescent labeling of γ-PGA was used to locate the site of its activity in root protoplasts. The relationship between γ-PGA-induced stress tolerance and two signal molecules, H2O2 and Ca(2+), as well as the γ-PGA-elicited signaling pathway at the whole plant level, were explored. Fluorescent labeling showed that γ-PGA did not enter the cytoplasm but instead attached to the surface of root protoplasm. Here, it triggered a burst of H2O2 in roots by enhancing the transcription of RbohD and RbohF, and the elicited H2O2 further activated an influx of Ca(2+) into root cells. Ca(2+) signaling was transmitted via the stem from roots to leaves, where it elicited a fresh burst of H2O2, thus promoting plant growth and enhancing stress tolerance. On the basis of these observation, we propose that γ-PGA mediates stress tolerance in Brassica napus seedlings by activating an H2O2 burst and subsequent crosstalk between H2O2 and Ca(2+) signaling.
国家哲学社会科学文献中心版权所有