首页    期刊浏览 2024年07月03日 星期三
登录注册

文章基本信息

  • 标题:Chemical interaction mechanism of 10-MDP with zirconia
  • 本地全文:下载
  • 作者:Noriyuki Nagaoka ; Kumiko Yoshihara ; Victor Pinheiro Feitosa
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep45563
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Currently, the functional monomer 10-methacryloyloxy-decyl-dihydrogen-phosphate (10-MDP) was documented to chemically bond to zirconia ceramics. However, little research has been conducted to unravel the underlying mechanisms. This study aimed to assess the chemical interaction and to demonstrate the mechanisms of coordination between 10-MDP and zirconium oxide using (1)H and (31)P magic angle spinning (MAS) nuclear magnetic resonance (NMR) and two dimensional (2D) (1)H → (31)P heteronuclear correlation (HETCOR) NMR. In addition, shear bond-strength (SBS) tests were conducted to determine the effect of 10-MDP concentration on the bonding effectiveness to zirconia. These SBS tests revealed a 10-MDP concentration-dependent SBS with a minimum of 1-ppb 10-MDP needed. (31)P-NMR revealed that one P-OH non-deprotonated of the PO3H2 group from 10-MDP chemically bonded strongly to zirconia. (1)H-(31)P HETCOR NMR indicated that the 10-MDP monomer can be adsorbed onto the zirconia particles by hydrogen bonding between the P=O and Zr-OH groups or via ionic interactions between partially positive Zr and deprotonated 10-MDP (P-O(-)). The combination of (1)H NMR and 2D (1)H-(31)P HETCOR NMR enabled to describe the different chemical states of the 10-MDP bonds with zirconia; they not only revealed ionic but also hydrogen bonding between 10-MDP and zirconia.
国家哲学社会科学文献中心版权所有