首页    期刊浏览 2025年07月20日 星期日
登录注册

文章基本信息

  • 标题:Novel peptides for deciphering structural and signalling functions of E-cadherin in mouse embryonic stem cells
  • 本地全文:下载
  • 作者:Joe M. Segal ; Christopher M. Ward
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep41827
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:We have previously shown that E-cadherin regulates the naive pluripotent state of mouse embryonic stem cells (mESCs) by enabling LIF-dependent STAT3 phosphorylation, with E-cadherin null mESCs exhibiting over 3000 gene transcript alterations and a switch to Activin/Nodal-dependent pluripotency. However, elucidation of the exact mechanisms associated with E-cadherin function in mESCs is compounded by the difficulty in delineating the structural and signalling functions of this protein. Here we show that mESCs treated with the E-cadherin neutralising antibody DECMA-1 or the E-cadherin binding peptide H-SWELYYPLRANL-NH2 (Epep) exhibit discrete profiles for pluripotent transcripts and NANOG protein expression, demonstrating that the type of E-cadherin inhibitor employed dictates the cellular phenotype of mESCs. Alanine scanning mutation of Epep revealed residues critical for Tbx3, Klf4 and Esrrb transcript repression, cell-cell contact abrogation, cell survival in suspension, STAT3 phosphorylation and water solubility. STAT3 phosphorylation was found to be independent of loss of cell-cell contact and Activin/Nodal-dependent pluripotency and a peptide is described that enhances STAT3 phosphorylation and Nanog transcript and protein expression in mESCs. These peptides represent a useful resource for deciphering the structural and signalling functions of E-cadherin and demonstrate that complete absence of E-cadherin protein is likely required for hierarchical signalling pathway alterations in mESCs.
国家哲学社会科学文献中心版权所有