首页    期刊浏览 2025年06月05日 星期四
登录注册

文章基本信息

  • 标题:Sound Insulation in a Hollow Pipe with Subwavelength Thickness
  • 本地全文:下载
  • 作者:Hai-Long Zhang ; Yi-Fan Zhu ; Bin Liang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep44106
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Suppression of the transmission of undesired sound in ducts is a fundamental issue with wide applications in a great variety of scenarios. Yet the conventional ways of duct noise control have to rely on mismatched impedance or viscous dissipation, leading the ducts to have ventilation capability weakened by inserted absorbers or a thick shell to accommodate bulky resonators. Here we present a mechanism for insulating sound transmission in a hollow pipe with subwavelength thickness, by directly reversing its propagating direction via anomalous reflection at the flat inner boundary with well-designed phase profile. A metamaterial-based implementation is demonstrated both in simulation and in experiment, verifying the theoretical prediction on high-efficient sound insulation at the desired frequencies by the resulting device, which has a shell as thin as 1/8 wavelength and an entirely open passage that maintains the continuity of the background medium. We have also investigated the potential of our scheme to work in broadband by simply cascading different metamaterial unit cells. Without the defects of blocked path and bulky size of existing sound insulators, we envision our design will open new route to sound insulation in ducts and have deep implication in practical applications such as designs of ventilation fans and vehicle silencers.
国家哲学社会科学文献中心版权所有