首页    期刊浏览 2024年07月07日 星期日
登录注册

文章基本信息

  • 标题:Co-delivery of paclitaxel and tetrandrine via iRGD peptide conjugated lipid-polymer hybrid nanoparticles overcome multidrug resistance in cancer cells
  • 本地全文:下载
  • 作者:Jinming Zhang ; Lu Wang ; Hon Fai Chan
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep46057
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:One of the promising strategies to overcome tumor multidrug resistance (MDR) is to deliver anticancer drug along with P-glycoprotein (P-gp) inhibitor simultaneously. To enhance the cancer cellular internalization and implement the controlled drug release, herein an iRGD peptide-modified lipid-polymer hybrid nanosystem (LPN) was fabricated to coload paclitaxel (PTX) and tetrandrine (TET) at a precise combination ratio. In this co-delivery system, PTX was covalently conjugated to poly (D,L-lactide-co-glycolide) polymeric core by redox-sensitive disulfide bond, while TET was physically capsulated spontaneously for the aim to suppress P-gp in advance by the earlier released TET in cancer cells. As a result, the PTX+TET/iRGD LPNs with a core-shell structure possessed high drug loading efficiency, stability and redox-sensitive drug release profiles. Owing to the enhanced cellular uptake and P-gp suppression mediated by TET, significantly more PTX accumulated in A2780/PTX cells treated with PTX+TET/iRGD LPNs than either free drugs or non-iRGD modified LPNs. As expected, PTX+TET/iRGD LPNs presented the highest cytotoxicity against A2780/PTX cells and effectively promoted ROS production, enhanced apoptosis and cell cycle arrests particularly. Taken together, the co-delivery system demonstrated great promise as potential treatment for MDR-related tumors based on the synergistic effects of P-gp inhibition, enhanced endocytosis and intracellular sequentially drug release.
国家哲学社会科学文献中心版权所有