首页    期刊浏览 2025年04月06日 星期日
登录注册

文章基本信息

  • 标题:Signalling mechanisms mediating Zn2+-induced TRPM2 channel activation and cell death in microglial cells
  • 本地全文:下载
  • 作者:Sharifah Syed Mortadza ; Joan A. Sim ; Martin Stacey
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep45032
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Excessive Zn(2+) causes brain damage via promoting ROS generation. Here we investigated the role of ROS-sensitive TRPM2 channel in H2O2/Zn(2+)-induced Ca(2+) signalling and cell death in microglial cells. H2O2/Zn(2+) induced concentration-dependent increases in cytosolic Ca(2+) concentration ([Ca(2+)]c), which was inhibited by PJ34, a PARP inhibitor, and abolished by TRPM2 knockout (TRPM2-KO). Pathological concentrations of H2O2/Zn(2+) induced substantial cell death that was inhibited by PJ34 and DPQ, PARP inhibitors, 2-APB, a TRPM2 channel inhibitor, and prevented by TRPM2-KO. Further analysis indicate that Zn(2+) induced ROS production, PARP-1 stimulation, increase in the [Ca(2+)]c and cell death, all of which were suppressed by chelerythrine, a protein kinase C inhibitor, DPI, a NADPH-dependent oxidase (NOX) inhibitor, GKT137831, a NOX1/4 inhibitor, and Phox-I2, a NOX2 inhibitor. Furthermore, Zn(2+)-induced PARP-1 stimulation, increase in the [Ca(2+)]c and cell death were inhibited by PF431396, a Ca(2+)-sensitive PYK2 inhibitor, and U0126, a MEK/ERK inhibitor. Taken together, our study shows PKC/NOX-mediated ROS generation and PARP-1 activation as an important mechanism in Zn(2+)-induced TRPM2 channel activation and, TRPM2-mediated increase in the [Ca(2+)]c to trigger the PYK2/MEK/ERK signalling pathway as a positive feedback mechanism that amplifies the TRPM2 channel activation. Activation of these TRPM2-depenent signalling mechanisms ultimately drives Zn(2+)-induced Ca(2+) overloading and cell death.
国家哲学社会科学文献中心版权所有