首页    期刊浏览 2024年07月09日 星期二
登录注册

文章基本信息

  • 标题:Molecular signaling underlying bulleyaconitine A (BAA)-induced microglial expression of prodynorphin
  • 本地全文:下载
  • 作者:Teng-Fei Li ; Hai-Yun Wu ; Yi-Rui Wang
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep45056
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Bulleyaconitine (BAA) has been shown to possess antinociceptive activities by stimulation of dynorphin A release from spinal microglia. This study investigated its underlying signal transduction mechanisms. The data showed that (1) BAA treatment induced phosphorylation of CREB (rather than NF-κB) and prodynorphin expression in cultured primary microglia, and antiallodynia in neuropathy, which were totally inhibited by the CREB inhibitor KG-501; (2) BAA upregulated phosphorylation of p38 (but not ERK or JNK), and the p38 inhibitor SB203580 (but not ERK or JNK inhibitor) and p38β gene silencer siRNA/p38β (but not siRNA/p38α) completely blocked BAA-induced p38 phosphorylation and/or prodynorphin expression, and antiallodynia; (3) BAA stimulated cAMP production and PKA phosphorylation, and the adenylate cyclase inhibitor DDA and PKA inhibitor H-89 entirely antagonized BAA-induced prodynorphin expression and antiallodynia; (4) The Gs-protein inhibitor NF449 completely inhibited BAA-increased cAMP level, prodynorphin expression and antiallodynia, whereas the antagonists of noradrenergic, corticotrophin-releasing factor, A1 adenosine, formyl peptide, D1/D2 dopamine, and glucagon like-peptide-1 receptors failed to block BAA-induced antiallodynia. The data indicate that BAA-induced microglial expression of prodynorphin is mediated by activation of the cAMP-PKA-p38β-CREB signaling pathway, suggesting that its possible target is a Gs-protein-coupled receptor - "aconitine receptor", although the chemical identity is not illustrated.
国家哲学社会科学文献中心版权所有