首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Recombinant Mycobacterium smegmatis with a pMyong2 vector expressing Human Immunodeficiency Virus Type I Gag can induce enhanced virus-specific immune responses
  • 本地全文:下载
  • 作者:Byoung-Jun Kim ; Jeong-Ryeol Gong ; Ga-Na Kim
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep44776
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Recently, we have developed a novel Mycobacterium-Escherichia coli shuttle vector system using pMyong2, which can provide an enhanced expression of heterologous genes in recombinant Mycobacterium smegmatis (rSmeg). To investigate the usefulness of rSmeg using pMyong2 in vaccine application, we vaccinated M. smegmatis with pMyong2 system expressing Human Immunodeficiency Virus Type I (HIV-1) Gag p24 antigen (rSmeg-pMyong2-p24) into mice and examined its cellular and humoral immune responses against HIV gag protein. We found that rSmeg-pMyong2-p24 expressed higher levels of Gag protein in bacteria, macrophage cell line (J774A.1) and mouse bone marrow derived dendritic cells (BMDCs) compared to rSmeg strains using two other vector systems, pAL5000 derived vector (rSmeg-pAL-p24) and the integrative plasmid, pMV306 (rSmeg-pMV306-p24). Inoculation of mice with rSmeg-pMyong2-p24 elicited more effective immunity compared to the other two rSmeg strains, as evidenced by higher levels of HIV-1 Gag-specific CD4 and CD8 T lymphocyte proliferation, interferon gamma ELISPOT cell induction, and antibody production. Furthermore, rSmeg-pMyong2-p24 showed a higher level of cytotoxic T cell response against target cells expressing Gag p24 proteins. Our data suggest that Mycobacterium-Escherichia coli shuttle vector system with pMyong2 may provide an advantage in vaccine application of rSmeg over other vector systems.
国家哲学社会科学文献中心版权所有