首页    期刊浏览 2024年11月07日 星期四
登录注册

文章基本信息

  • 标题:Fast Bayesian inference of optical trap stiffness and particle diffusion
  • 本地全文:下载
  • 作者:Sudipta Bera ; Shuvojit Paul ; Rajesh Singh
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep41638
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Bayesian inference provides a principled way of estimating the parameters of a stochastic process that is observed discretely in time. The overdamped Brownian motion of a particle confined in an optical trap is generally modelled by the Ornstein-Uhlenbeck process and can be observed directly in experiment. Here we present Bayesian methods for inferring the parameters of this process, the trap stiffness and the particle diffusion coefficient, that use exact likelihoods and sufficient statistics to arrive at simple expressions for the maximum a posteriori estimates. This obviates the need for Monte Carlo sampling and yields methods that are both fast and accurate. We apply these to experimental data and demonstrate their advantage over commonly used non-Bayesian fitting methods.
国家哲学社会科学文献中心版权所有