摘要:In this paper, a novel array of quasi-three-dimensional (quasi-3D) bowtie nanoantennas has been investigated numerically and experimentally. A low-cost and facile method has been designed and implemented to fabricate the quasi-3D bowtie nanoantennas. The fabrication processes containing laser patterning and wet etching have demonstrated the advantages of easily tuning the periodic and diameter of microhole arrays. According to the simulated results, the electric and magnetic resonances at visible wavelengths are obtained in the tips and contours of the metamaterials made of the quasi-3D bowtie nanoantennas, respectively. The effects of the size and gap of quasi-3D bowtie nanoantennas on the array performance have also been studied. The underlying mechanism suggests that different electric and magnetic resonant ranges of the metamaterials could contribute to the broad resonant range for the monolithic metamaterials.