摘要:Histo-blood group ABO gene polymorphism is crucial in transfusion medicine. We studied the activity and subcellular distribution of ABO gene-encoded A glycosyltransferases with N-terminal truncation. We hypothesized that truncated enzymes starting at internal methionines drove the synthesis of oligosaccharide A antigen in those already described alleles that lack a proper translation initiation codon. Not only we tested the functionality of the mutant transferases by expressing them and assessing their capacity to drive the appearance of A antigen on the cell surface, but we also analyzed their subcellullar localization, which has not been described before. The results highlight the importance of the transmembrane domain because proteins deprived of it are not able to localize properly and deliver substantial amounts of antigen on the cell surface. Truncated proteins with their first amino acid well within the luminal domain are not properly localized and lose their enzymatic activity. Most importantly, we demonstrated that other codons than AUG might be used to start the protein synthesis rather than internal methionines in translation-initiation mutants, explaining the molecular mechanism by which transferases lacking a classical start codon are able to synthesize A/B antigens.