首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Discovery of genes coding for carbohydrate-active enzyme by metagenomic analysis of lignocellulosic biomasses
  • 本地全文:下载
  • 作者:Salvatore Montella ; Valeria Ventorino ; Vincent Lombard
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep42623
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:In this study, a high-throughput sequencing approach was applied to discover novel biocatalysts for lignocellulose hydrolysis from three dedicated energy crops, Arundo donax, Eucalyptus camaldulensis and Populus nigra, after natural biodegradation. The microbiomes of the three lignocellulosic biomasses were dominated by bacterial species (approximately 90%) with the highest representation by the Streptomyces genus both in the total microbial community composition and in the microbial diversity related to GH families of predicted ORFs. Moreover, the functional clustering of the predicted ORFs showed a prevalence of poorly characterized genes, suggesting these lignocellulosic biomasses are potential sources of as yet unknown genes. 1.2%, 0.6% and 3.4% of the total ORFs detected in A. donax, E. camaldulensis and P. nigra, respectively, were putative Carbohydrate-Active Enzymes (CAZymes). Interestingly, the glycoside hydrolases abundance in P. nigra (1.8%) was higher than that detected in the other biomasses investigated in this study. Moreover, a high percentage of (hemi)cellulases with different activities and accessory enzymes (mannanases, polygalacturonases and feruloyl esterases) was detected, confirming that the three analyzed samples were a reservoir of diversified biocatalysts required for an effective lignocellulose saccharification.
国家哲学社会科学文献中心版权所有