首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Zebrafish tracking using convolutional neural networks
  • 本地全文:下载
  • 作者:Zhiping XU ; Xi En Cheng
  • 期刊名称:Scientific Reports
  • 电子版ISSN:2045-2322
  • 出版年度:2017
  • 卷号:7
  • 期号:1
  • DOI:10.1038/srep42815
  • 语种:English
  • 出版社:Springer Nature
  • 摘要:Keeping identity for a long term after occlusion is still an open problem in the video tracking of zebrafish-like model animals, and accurate animal trajectories are the foundation of behaviour analysis. We utilize the highly accurate object recognition capability of a convolutional neural network (CNN) to distinguish fish of the same congener, even though these animals are indistinguishable to the human eye. We used data augmentation and an iterative CNN training method to optimize the accuracy for our classification task, achieving surprisingly accurate trajectories of zebrafish of different size and age zebrafish groups over different time spans. This work will make further behaviour analysis more reliable.
国家哲学社会科学文献中心版权所有