首页    期刊浏览 2025年02月26日 星期三
登录注册

文章基本信息

  • 标题:Global Solution of a Nonlinear Conservation Law with Weak Discontinuous Flux in the Half Space
  • 本地全文:下载
  • 作者:Xiaoqian Li ; Jing Zhang
  • 期刊名称:American Journal of Computational Mathematics
  • 印刷版ISSN:2161-1203
  • 电子版ISSN:2161-1211
  • 出版年度:2018
  • 卷号:8
  • 期号:4
  • 页码:326-342
  • DOI:10.4236/ajcm.2018.84026
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:This paper is concerned with the initial-boundary value problem of a nonlinear conservation law in the half space R+= {x x > 0} where a>0 , u(x,t) is an unknown function of x ∈ R+ and t>0 , u ± , um are three given constants satisfying um=u+≠u- or um=u-≠u+ , and the flux function f is a given continuous function with a weak discontinuous point ud. The main purpose of our present manuscript is devoted to studying the structure of the global weak entropy solution for the above initial-boundary value problem under the condition of f '-(ud) > f '+(ud). By the characteristic method and the truncation method, we construct the global weak entropy solution of this initial-boundary value problem, and investigate the interaction of elementary waves with the boundary and the boundary behavior of the weak entropy solution.
  • 关键词:Nonlinear Conservation Laws with Weak Discontinuous Flux;Initial-Boundary Value Problem;Shock Wave;Rarefaction Wave;Contact Discontinuity;Interaction;Structure of Global Weak Entropy Solution
国家哲学社会科学文献中心版权所有