首页    期刊浏览 2025年05月24日 星期六
登录注册

文章基本信息

  • 标题:Core and Uncore Joint Frequency Scaling Strategy
  • 本地全文:下载
  • 作者:Vaibhav Sundriyal ; Masha Sosonkina ; Bryce Westheimer
  • 期刊名称:Journal of Computer and Communications
  • 印刷版ISSN:2327-5219
  • 电子版ISSN:2327-5227
  • 出版年度:2018
  • 卷号:6
  • 期号:12
  • 页码:184-201
  • DOI:10.4236/jcc.2018.612018
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Energy-proportional computing is one of the foremost constraints in the design of next generation exascale systems. These systems must have a very high FLOP-per-watt ratio to be sustainable, which requires tremendous improvements in power efficiency for modern computing systems. This paper focuses on the processor—as still the biggest contributor to the power usage—by considering both its core and uncore power subsystems. The uncore describes those processor functions that are not handled by the core, such as L3 cache and on-chip interconnect, and contributes significantly to the total system power. The uncore frequency scaling (UFS) capability has been available to the user since the Intel Haswell processor generation. In this paper, performance and power models are proposed to use both the UFS and dynamic voltage and frequency scaling (DVFS) to reduce the energy consumption in parallel applications. Then, these models are incorporated into a runtime strategy that performs processor frequency scaling during parallel application execution. The strategy can be implemented at the kernel/firmware level, which makes it suitable for improving the energy efficiency of exascale design. Experiments on a 20-core Haswell-EP machine using the quantum chemistry application GAMESS and NAS benchmark resulted in up to 24% energy savings with as little as 2% performance loss.
  • 关键词:Uncore Frequency Scaling (UFS);Dynamic Voltage and Frequency Scaling (DVFS);Power;GAMESS;Energy Savings;NAS Benchmarks
国家哲学社会科学文献中心版权所有