首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Outlier Detection Based on Robust Mahalanobis Distance and Its Application
  • 本地全文:下载
  • 作者:Xu Li ; Songren Deng ; Lifang Li
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2019
  • 卷号:9
  • 期号:1
  • 页码:15-26
  • DOI:10.4236/ojs.2019.91002
  • 出版社:Scientific Research Publishing
  • 摘要:Classical Mahalanobis distance is used as a method of detecting outliers, and is affected by outliers. Some robust Mahalanobis distance is proposed via the fast MCD estimator. However, the bias of the MCD estimator increases significantly as the dimension increases. In this paper, we propose the improved Mahalanobis distance based on a more robust Rocke estimator under high-dimensional data. The results of numerical simulation and empirical analysis show that our proposed method can better detect the outliers in the data than the above two methods when there are outliers in the data and the dimensions of data are very high.
  • 关键词:MCD Estimator;Rocke Estimator;Outlier;Mahalanobis Distance
国家哲学社会科学文献中心版权所有