期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:24
页码:12025-12034
DOI:10.1073/pnas.1821455116
出版社:The National Academy of Sciences of the United States of America
摘要:Motor patterns in legged vertebrates show modularity in both young and adult animals, comprising motor synergies or primitives. Are such spinal modules observed in young mammals conserved into adulthood or altered? Conceivably, early circuit modules alter radically through experience and descending pathways’ activity. We analyze lumbar motor patterns of intact adult rats and the same rats after spinal transection and compare these with adult rats spinal transected 5 days postnatally, before most motor experience, using only rats that never developed hind limb weight bearing. We use independent component analysis (ICA) to extract synergies from electromyography (EMG). ICA information-based methods identify both weakly active and strongly active synergies. We compare all spatial synergies and their activation/drive strengths as proxies of spinal modules and their underlying circuits. Remarkably, we find that spatial primitives/synergies of adult injured and neonatal injured rats differed insignificantly, despite different developmental histories. However, intact rats possess some synergies that differ significantly, although modestly, in spatial structure. Rats injured as adults were more similar in modularity to rats that had neonatal spinal transection than to themselves before injury. We surmise that spinal circuit modules for spatial synergy patterns may be determined early, before postnatal day 5 (P5), and remain largely unaltered by subsequent development or weight-bearing experience. An alternative explanation but equally important is that, after complete spinal transection, both neonatal and mature adult spinal cords rapidly converge to common synergy sets. This fundamental or convergent synergy circuitry, fully determined by P5, is revealed after spinal cord transection.