首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Structure of full-length human phenylalanine hydroxylase in complex with tetrahydrobiopterin
  • 本地全文:下载
  • 作者:Marte Innselset Flydal ; Marte Innselset Flydal ; Martín Alcorlo-Pagés
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2019
  • 卷号:116
  • 期号:23
  • 页码:11229-11234
  • DOI:10.1073/pnas.1902639116
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Phenylalanine hydroxylase (PAH) is a key enzyme in the catabolism of phenylalanine, and mutations in this enzyme cause phenylketonuria (PKU), a genetic disorder that leads to brain damage and mental retardation if untreated. Some patients benefit from supplementation with a synthetic formulation of the cofactor tetrahydrobiopterin (BH4) that partly acts as a pharmacological chaperone. Here we present structures of full-length human PAH (hPAH) both unbound and complexed with BH4 in the precatalytic state. Crystal structures, solved at 3.18-Å resolution, show the interactions between the cofactor and PAH, explaining the negative regulation exerted by BH4. BH4 forms several H-bonds with the N-terminal autoregulatory tail but is far from the catalytic FeII. Upon BH4 binding a polar and salt-bridge interaction network links the three PAH domains, explaining the stability conferred by BH4. Importantly, BH4 binding modulates the interaction between subunits, providing information about PAH allostery. Moreover, we also show that the cryo-EM structure of hPAH in absence of BH4 reveals a highly dynamic conformation for the tetramers. Structural analyses of the hPAH:BH4 subunits revealed that the substrate-induced movement of Tyr138 into the active site could be coupled to the displacement of BH4 from the precatalytic toward the active conformation, a molecular mechanism that was supported by site-directed mutagenesis and targeted molecular dynamics simulations. Finally, comparison of the rat and human PAH structures show that hPAH is more dynamic, which is related to amino acid substitutions that enhance the flexibility of hPAH and may increase the susceptibility to PKU-associated mutations.
  • 关键词:human phenylalanine hydroxylase ; phenylketonuria ; X-ray crystallography ; cryo-EM ; allosteric regulation
国家哲学社会科学文献中心版权所有