期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:23
页码:11380-11389
DOI:10.1073/pnas.1901407116
出版社:The National Academy of Sciences of the United States of America
摘要:LPS-responsive beige-like anchor (LRBA) protein deficiency in humans causes immune dysregulation resulting in autoimmunity, inflammatory bowel disease (IBD), hypogammaglobulinemia, regulatory T (Treg) cell defects, and B cell functional defects, but the cellular and molecular mechanisms responsible are incompletely understood. In an ongoing forward genetic screen for N -ethyl- N -nitrosourea (ENU)-induced mutations that increase susceptibility to dextran sodium sulfate (DSS)-induced colitis in mice, we identified two nonsense mutations in Lrba . Although Treg cells have been a main focus in LRBA research to date, we found that dendritic cells (DCs) contribute significantly to DSS-induced intestinal inflammation in LRBA-deficient mice. Lrba −/− DCs exhibited excessive IRF3/7- and PI3K/mTORC1-dependent signaling and type I IFN production in response to the stimulation of the Toll-like receptors (TLRs) 3, TLR7, and TLR9. Substantial reductions in cytokine expression and sensitivity to DSS in LRBA-deficient mice were caused by knockout of Unc93b1 , a chaperone necessary for trafficking of TLR3, TLR7, and TLR9 to endosomes. Our data support a function for LRBA in limiting endosomal TLR signaling and consequent intestinal inflammation.