期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2019
卷号:116
期号:22
页码:10749-10756
DOI:10.1073/pnas.1903875116
出版社:The National Academy of Sciences of the United States of America
摘要:Methyl anthranilate (MANT) is a widely used compound to give grape scent and flavor, but is currently produced by petroleum-based processes. Here, we report the direct fermentative production of MANT from glucose by metabolically engineered Escherichia coli and Corynebacterium glutamicum strains harboring a synthetic plant-derived metabolic pathway. Optimizing the key enzyme anthranilic acid (ANT) methyltransferase1 (AAMT1) expression, increasing the direct precursor ANT supply, and enhancing the intracellular availability and salvage of the cofactor S -adenosyl-l -methionine required by AAMT1, results in improved MANT production in both engineered microorganisms. Furthermore, in situ two-phase extractive fermentation using tributyrin as an extractant is developed to overcome MANT toxicity. Fed-batch cultures of the final engineered E. coli and C. glutamicum strains in two-phase cultivation mode led to the production of 4.47 and 5.74 g/L MANT, respectively, in minimal media containing glucose. The metabolic engineering strategies developed here will be useful for the production of volatile aromatic esters including MANT.