首页    期刊浏览 2024年07月19日 星期五
登录注册

文章基本信息

  • 标题:Where should we apply biochar?
  • 本地全文:下载
  • 作者:Hamze Dokoohaki ; Fernando E Miguez ; David Laird
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2019
  • 卷号:14
  • 期号:4
  • 页码:1-10
  • DOI:10.1088/1748-9326/aafcf0
  • 出版社:IOP Publishing Ltd
  • 摘要:The heating of biomass under low-oxygen conditions generates three co-products, bio-oil, biogas, and biochar. Bio-oil can be stabilized and used as fuel oil or be further refined for various applications and biogas can be used as an energy source during the low-oxygen heating process. Biochar can be used to sequester carbon in soil and has the potential to increase crop yields when it is used to improve yield-limiting soil properties. Complex bio-physical interactions have made it challenging to answer the question of where biochar should be applied for the maximum agronomic and economic benefits. We address this challenge by developing an extensive informatics workflow for processing and analyzing crop yield response data as well as a large spatial-scale modeling platform. We use a probabilistic graphical model to study the relationships between soil and biochar variables and predict the probability and magnitude of crop yield response to biochar application. Our results show an average increase in crop yields ranging from 4.7% to 6.4% depending on the biochar feedstock and application rate. Expected yield increases of at least 6.1% and 8.8% are necessary to cover 25% and 10% of US cropland with biochar. We find that biochar application to crop area with an expected yield increase of at least 5.3%–5.9% would result in carbon sequestration offsetting 0.57%–0.67% of US greenhouse gas emissions. Applying biochar to corn area is the most profitable from a revenue perspective when compared to soybeans and wheat because additional revenues accrued by farmers are not enough to cover the costs of biochar applications in many regions of the United States.
  • 关键词:large spatial scale modeling; biochar; carbon sequestration
国家哲学社会科学文献中心版权所有