首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:An Alternative Sensitivity Approach for Longitudinal Analysis with Dropout
  • 本地全文:下载
  • 作者:Amal Almohisen ; Robin Henderson ; Arwa M. Alshingiti
  • 期刊名称:Journal of Probability and Statistics
  • 印刷版ISSN:1687-952X
  • 电子版ISSN:1687-9538
  • 出版年度:2019
  • 卷号:2019
  • 页码:1-11
  • DOI:10.1155/2019/1019303
  • 出版社:Hindawi Publishing Corporation
  • 摘要:In any longitudinal study, a dropout before the final timepoint can rarely be avoided. The chosen dropout model is commonly one of these types: Missing Completely at Random (MCAR), Missing at Random (MAR), Missing Not at Random (MNAR), and Shared Parameter (SP). In this paper we estimate the parameters of the longitudinal model for simulated data and real data using the Linear Mixed Effect (LME) method. We investigate the consequences of misspecifying the missingness mechanism by deriving the so-called least false values. These are the values the parameter estimates converge to, when the assumptions may be wrong. The knowledge of the least false values allows us to conduct a sensitivity analysis, which is illustrated. This method provides an alternative to a local misspecification sensitivity procedure, which has been developed for likelihood-based analysis. We compare the results obtained by the method proposed with the results found by using the local misspecification method. We apply the local misspecification and least false methods to estimate the bias and sensitivity of parameter estimates for a clinical trial example.
国家哲学社会科学文献中心版权所有