首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Electrically defined topological interface states of graphene surface plasmons based on a gate-tunable quantum Bragg grating
  • 本地全文:下载
  • 作者:Zhiyuan Fan ; Shourya Dutta-Gupta ; Ran Gladstone
  • 期刊名称:Nanophotonics
  • 印刷版ISSN:2192-8606
  • 电子版ISSN:2192-8614
  • 出版年度:2019
  • 卷号:8
  • 期号:8
  • 页码:1417-1431
  • DOI:10.1515/nanoph-2019-0108
  • 出版社:Walter de Gruyter GmbH
  • 摘要:A periodic metagate is designed on top of a boron nitride-graphene heterostructure to modulate the local carrier density distribution on the monolayer graphene. This causes the bandgaps of graphene surface plasmon polaritons to emerge because of either the interaction between the plasmon modes, which are mediated by the varying local carrier densities, or their interaction with the metal gates. Using the example of a double-gate graphene device, we discuss the tunable band properties of graphene plasmons due to the competition between these two mechanisms. Because of this, a bandgap inversion, which results in a Zak phase switching, can be realized through electrostatic gating. Here we also show that an anisotropic plasmonic topological edge state exists at the interface between two graphene gratings of different Zak phases. While the orientation of the dipole moments can differentiate the band topologies of each graphene grating, the angle of radiation remains a tunable property. This may serve as a stepping stone toward active control of the band structures of surface plasmons for potential applications in optical communication, wave steering, or sensing.
  • 关键词:graphene plasmons ; band topology ; active metasurface ; topological interface state
国家哲学社会科学文献中心版权所有