首页    期刊浏览 2024年09月07日 星期六
登录注册

文章基本信息

  • 标题:Trends and controls on water-use efficiency of an old-growth coniferous forest in the Pacific Northwest
  • 本地全文:下载
  • 作者:Yueyang Jiang ; Christopher J Still ; Bharat Rastogi
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2019
  • 卷号:14
  • 期号:7
  • 页码:1-13
  • DOI:10.1088/1748-9326/ab2612
  • 出版社:IOP Publishing Ltd
  • 摘要:At the ecosystem scale, water-use efficiency (WUE) is defined broadly as the ratio of carbon assimilated to water evaporated by an ecosystem. WUE is an important aspect of carbon and water cycling and has been used to assess forest ecosystem responses to climate change and rising atmospheric CO2 concentrations. This study investigates the influence of meteorological and radiation variables on forest WUE by analyzing an 18 year (1998–2015) half-hourly time series of carbon and water fluxes measured with the eddy covariance technique in an old-growth conifer forest in the Pacific Northwest, USA. Three different metrics of WUE exhibit an overall increase over the period 1998–2007 mainly due to an increase in gross primary productivity (GPP) and a decrease in evapotranspiration (ET). However, the WUE metrics did not exhibit an increase across the period from 2008 to 2015 due to a greater reduction in GPP relative to ET. The strength of associations among particular meteorological variables and WUE varied with the scale of temporal aggregation used. In general, vapor pressure deficit and air temperature appear to control WUE at half-hourly and daily time scales, whereas atmospheric CO2 concentration was identified as the most important factor controlling monthly WUE. Carbon and water fluxes and the consequent WUE showed a weak correlation to the Standard Precipitation Index, while carbon fluxes were strongly dependent on the combined effect of multiple climate factors. The inferred patterns and controls on forest WUE highlighted have implications for improved understanding and prediction of possible adaptive adjustments of forest physiology in response to climate change and rising atmospheric CO2 concentrations.
  • 关键词:water-use efficiency; carbon and water fluxes; old-growth coniferous forest; drought; climatic change
国家哲学社会科学文献中心版权所有