期刊名称:IOP Conference Series: Earth and Environmental Science
印刷版ISSN:1755-1307
电子版ISSN:1755-1315
出版年度:2019
卷号:267
期号:2
页码:1-9
DOI:10.1088/1755-1315/267/2/022013
出版社:IOP Publishing
摘要:The large-scale integration of renewable energy to power grid is an important feature of future power system development, but renewable energy has strong fluctuation and high uncertainty, which will have a strong impact on power grid. In order to ensure the safe, efficient and reliable operation of power system, improve the acceptability of renewable energy in power grid planning, it is urgent to evaluate the adaptability of power grid structure to the strong fluctuation and uncertainty of renewable energy. Considering that the adaptability of power grid has a broad meaning and is difficult to quantify, this paper analyses the characteristics and actual operation state of the high-penetration renewable energy system and establishes an adaptability index series of power gird structure considering operation safety, efficiency and stability. Based on the adaptability indexes, a multi-objective transmission planning model is put forward. The improved chaotic crossover genetic algorithm and the nonlinear PCA method are used to solve the planning model. Finally, the simulation of Gaver-18 bus system demonstrates the feasibility and effectiveness of the adaptability indexes and planning model.