首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Irregular Target Object Detection Based on Faster R-CNN
  • 本地全文:下载
  • 作者:Bin Zhang ; Yubo Zhang ; Qinghui Pan
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2019
  • 卷号:252
  • 期号:4
  • 页码:1-6
  • DOI:10.1088/1755-1315/252/4/042111
  • 出版社:IOP Publishing
  • 摘要:Forthe shortcomings of traditional target detection algorithms can only extract specific target features for detection, propose the Faster R-CNN target detecti-on model of deep learning, combined with VGG16 and ResNet101 convolutional neur-al network methods, to detection of irregular target objects. Experiments established two types of irregular target data sets, walnut and jujube, use the network training and testing, verified the feasibility of deep learning network for detecting irregular target objects. The experimental results show that the Faster R-CNN target detection networ-kof training on the self-built data set, the final detection result reaches 95%, which proves the effectiveness of the network for detecting irregular target objects.
国家哲学社会科学文献中心版权所有