首页    期刊浏览 2025年09月16日 星期二
登录注册

文章基本信息

  • 标题:Particle and salinity sensing for the marine environment via deep learning using a Raspberry Pi
  • 本地全文:下载
  • 作者:James A Grant-Jacob ; Yunhui Xie ; Benita S Mackay
  • 期刊名称:Environmental Research Communications
  • 印刷版ISSN:2515-7620
  • 出版年度:2019
  • 卷号:1
  • 期号:3
  • 页码:1-9
  • DOI:10.1088/2515-7620/ab14c9
  • 出版社:IOP Publishing
  • 摘要:The identification of mixtures of particles in a solution via analysis of scattered light can be a complex task, due to the multiple scattering effects between different sizes and types of particles. Deep learning offers the capability for solving complex problems without the need for a physical understanding of the underlying system, and hence offers an elegant solution. Here, we demonstrate the application of convolutional neural networks for the identification of the concentration of microparticles (silicon dioxide and melamine resin) and the solution salinity, directly from the scattered light. The measurements were carried out in real-time using a Raspberry Pi, light source, camera, and neural network computation, hence demonstrating a portable and low-cost environmental marine sensor.
  • 关键词:particle pollution;deep learning;Raspberry Pi;plastic;microparticles
国家哲学社会科学文献中心版权所有