首页    期刊浏览 2024年11月08日 星期五
登录注册

文章基本信息

  • 标题:-Iterative Exponential Forgetting Factor for EEG Signals Parameter Estimation
  • 本地全文:下载
  • 作者:Karen Alicia Aguilar Cruz ; María Teresa Zagaceta Álvarez ; Rosaura Palma Orozco
  • 期刊名称:Computational Intelligence and Neuroscience
  • 印刷版ISSN:1687-5265
  • 电子版ISSN:1687-5273
  • 出版年度:2018
  • 卷号:2018
  • DOI:10.1155/2018/4613740
  • 出版社:Hindawi Publishing Corporation
  • 摘要:Electroencephalograms (EEG) signals are of interest because of their relationship with physiological activities, allowing a description of motion, speaking, or thinking. Important research has been developed to take advantage of EEG using classification or predictor algorithms based on parameters that help to describe the signal behavior. Thus, great importance should be taken to feature extraction which is complicated for the Parameter Estimation (PE)–System Identification (SI) process. When based on an average approximation, nonstationary characteristics are presented. For PE the comparison of three forms of iterative-recursive uses of the Exponential Forgetting Factor (EFF) combined with a linear function to identify a synthetic stochastic signal is presented. The one with best results seen through the functional error is applied to approximate an EEG signal for a simple classification example, showing the effectiveness of our proposal.
国家哲学社会科学文献中心版权所有