首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:Efficacy of black carbon aerosols: the role of shortwave cloud feedback
  • 本地全文:下载
  • 作者:Angshuman Modak ; Govindasamy Bala
  • 期刊名称:Environmental Research Letters
  • 印刷版ISSN:1748-9326
  • 电子版ISSN:1748-9326
  • 出版年度:2019
  • 卷号:14
  • 期号:8
  • 页码:1-12
  • DOI:10.1088/1748-9326/ab21e7
  • 出版社:IOP Publishing Ltd
  • 摘要:Using idealized climate model simulations, we investigate the effectiveness of black carbon (BC) aerosols in warming the planet relative to CO2 forcing. We find that a 60-fold increase in the BC aerosol mixing ratio from the present-day levels leads to the same equilibrium global mean surface warming (~4.1 K) as for a doubling of atmospheric CO2 concentration. However, the radiative forcing is larger (~5.5 Wm−2) in the BC case relative to the doubled CO2 case (~3.8 Wm−2) for the same surface warming indicating the efficacy (a metric for measuring the effectiveness) of BC aerosols to be less than CO2. The lower efficacy of BC aerosols is related to the differences in the shortwave (SW) cloud feedback: negative in the BC case but positive in the CO2 case. In the BC case, the negative SW cloud feedback is related to an increase in the tropical low clouds which is associated with a northward shift (~7°) of the Intertropical Convergence Zone (ITCZ). Further, we show that in the BC case fast precipitation suppression offsets the surface temperature mediated precipitation response and causes ~8% net decline in the global mean precipitation. Our study suggests that a feedback between the location of ITCZ and the interhemispheric temperature could exist, and the consequent SW cloud feedback could be contributing to the lower efficacy of BC aerosols. Therefore, an improved representation of low clouds in climate models is likely the key to understand the global climate sensitivity to BC aerosols.
  • 关键词:black carbon aerosols; climate feedback; climate sensitivity; efficacy of forcings; ITCZ shift; cloud feedback; hydrological cycle
国家哲学社会科学文献中心版权所有