首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Prediction of Cooling Load of An Energy Station based on GA-SVR
  • 本地全文:下载
  • 作者:Dazhou Zhao ; Weibo Zhang ; Zhongping Zhang
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2019
  • 卷号:300
  • 期号:4
  • 页码:1-6
  • DOI:10.1088/1755-1315/300/4/042007
  • 出版社:IOP Publishing
  • 摘要:Taking an energy station as the research object, the external dry bulb temperature and load values at t-1, t-2, t-3 moments were selected as input parameters, and the load value at t moment was used as output parameters to establish the SVR(Support Vector Regress)cooling load prediction model, the key parameters of SVR are optimized by GA(Genetic Algorithm).The results show that the maximum absolute error between the predicted value and the actual value is 4.83 GJ/h, the maximum relative error is 9.2 %, the average absolute error is 1.25 GJ/h, and the average relative error is 2.4 %.
国家哲学社会科学文献中心版权所有