首页    期刊浏览 2024年11月23日 星期六
登录注册

文章基本信息

  • 标题:Data Prediction Based on Support Vector Machine (SVM)—Taking Soil Quality Improvement Test Soil Organic Matter as an Example
  • 本地全文:下载
  • 作者:Yan Niu ; Shenglan Ye
  • 期刊名称:IOP Conference Series: Earth and Environmental Science
  • 印刷版ISSN:1755-1307
  • 电子版ISSN:1755-1315
  • 出版年度:2019
  • 卷号:295
  • 期号:2
  • 页码:1-6
  • DOI:10.1088/1755-1315/295/2/012021
  • 出版社:IOP Publishing
  • 摘要:Support Vector Machine (SVM) is a machine learning language based on statistical learning theory, mainly used for data classification and regression analysis. Taking the soil quality improvement test soil sample organic matter data as an example, the support vector machine is used to train and predict the data, and the relative error between the predicted value and the actual sample value is analyzed to verify the support vector machine data prediction in the field of land engineering. Operationality, pointing out the inadequacies, in order to provide reference for relevant data analysis.
国家哲学社会科学文献中心版权所有