首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:A new approach for Trading based on Long-Short Term memory Ensemble technique
  • 本地全文:下载
  • 作者:Zineb Lanbouri ; Said Achchab
  • 期刊名称:International Journal of Computer Science Issues
  • 印刷版ISSN:1694-0784
  • 电子版ISSN:1694-0814
  • 出版年度:2019
  • 卷号:16
  • 期号:3
  • 页码:27-31
  • DOI:10.5281/zenodo.3252969
  • 出版社:IJCSI Press
  • 摘要:Stock market prediction has always been crucial for stakeholders, traders and investors. We developed an ensemble Long Short Term Memory (LSTM) model that includes two time frequencies (annual and daily parameters) in order to predict next day Closing price (one-step ahead). Based on a four-step approach, this methodology is a serial combination of two LSTM algorithms. The empirical experiment is applied to 417 NY stock exchange companies. Based on Open High Low Close metrics and other financial ratios, the approach proves that the stock market prediction can be improved.
  • 关键词:Times series forecasting; Prediction model; Long;Short Term Memory; Deep Learning
国家哲学社会科学文献中心版权所有