首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Nanothermite colloids: A new prospective for enhanced performance
  • 本地全文:下载
  • 作者:M. Gaber Zaky ; Ahmed M. Abdalla ; Rakesh P. Sahu
  • 期刊名称:Defence Technology
  • 印刷版ISSN:2214-9147
  • 出版年度:2019
  • 卷号:15
  • 期号:3
  • 页码:1-7
  • DOI:10.1016/j.dt.2018.08.016
  • 出版社:Elsevier B.V.
  • 摘要:Nanothermites (metal oxide/metal) can offer tremendously exothermic self sustained reactions. CuO is one of the most effective oxidizers for naonothermite applications. This study reports on two prospectives for the manufacture of CuO nanoparticles. Colloidal CuO particles of 15 nm particle size were developed using hydrothermal synthesis technique. Multiwalled carbon nanotubes (MWCNTs) with surface are 700 m2/g was employed as a substrate for synthesis of CuO-coated MWCNTs using electroless plating. On the other hand, aluminium particles with combustion heat of 32000 J/g is of interest as high energy density material. The impact of stoichiometric nanothermite particles (CuO/Al & Cuo-coated MWCNTs/Al) on shock wave strength of Al/TNT nanocomposite was evaluated using ballistic mortar test. While CuO-coated MWCNTs decreased the shock wave strength by 15%; colloidal CuO enhanced the shock wave strength by 30%. The superior performance of colloidal CuO particles was correlated to their steric stabilization with employed organic solvent. This is the first time ever to report on fabrication, isolation, and integration of stablilized colloidal nanothermite particles into energetic matrix where intimate mixing between oxidizer and metal fuel could be achieved.
  • 关键词:Hydrothermal synthesis ; Nanoparticles ; Carbon nanotubes ; Nanothermites ; Energetic materials
国家哲学社会科学文献中心版权所有