首页    期刊浏览 2024年07月07日 星期日
登录注册

文章基本信息

  • 标题:Preparation and property of CL-20/BAMO-THF energetic nanocomposites
  • 本地全文:下载
  • 作者:Teng Chen ; Yan Zhang ; Shuang-feng Guo
  • 期刊名称:Defence Technology
  • 印刷版ISSN:2214-9147
  • 出版年度:2019
  • 卷号:15
  • 期号:3
  • 页码:1-7
  • DOI:10.1016/j.dt.2018.08.013
  • 出版社:Elsevier B.V.
  • 摘要:A sol-gel freezing-drying method was utilized to prepare energetic nanocomposites based on 2, 4, 6, 8, 10, 12-hexanitro-2, 4, 6, 8, 10, 12-hexaazaisowurtzitane (CL-20) with 3, 3-Bis (azidomethyl) oxetane-tetrahydrofuran copolymer (BAMO-THF) as energetic gel matrix. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman, Fourier-transform infrared spectroscopy (FT-IR) and differential thermal analyser (DTA) were utilized to characterize the structure and property of the resultant energetic nanocomposites. Compared with raw CL-20, the average particle sizes of CL-20 in CL-20/BAMO-THF energetic nanocomposites were decreased to nano scale and the morphologies of CL-20 were also changed from prismatic to spherical. FT-IR detection revealed that CL-20 particles were recrystallized in BAMO-THF gel matrix during the freezing-drying process. The thermal decomposition behaviors of the energetic nanocomposites were investigated as well. The thermolysis process of CL-20/BAMO-THF nanocomposites was enhanced and the activation energy was lower compared with that of raw CL-20, indicating that CL-20/BAMO-THF nanocomposites showed high thermolysis activity. The impact sensitivity tests indicated that CL-20/BAMO-THF energetic nanocomposites presented low sensitivity performance.
  • 关键词:CL-20/BAMO-THF nanocomposites ; Kinetic ; Thermodynamic ; Impact sensitivity
国家哲学社会科学文献中心版权所有