首页    期刊浏览 2025年05月05日 星期一
登录注册

文章基本信息

  • 标题:Constructing and Visualizing High-Quality Classifier Decision Boundary Maps
  • 本地全文:下载
  • 作者:Francisco C. M. Rodrigues ; Mateus Espadoto ; Roberto Hirata, Jr.
  • 期刊名称:Information
  • 电子版ISSN:2078-2489
  • 出版年度:2019
  • 卷号:10
  • 期号:9
  • 页码:1-22
  • DOI:10.3390/info10090280
  • 出版社:MDPI Publishing
  • 摘要:Visualizing decision boundaries of machine learning classifiers can help in classifier design, testing and fine-tuning. Decision maps are visualization techniques that overcome the key sparsity-related limitation of scatterplots for this task. To increase the trustworthiness of decision map use, we perform an extensive evaluation considering the dimensionality-reduction (DR) projection techniques underlying decision map construction. We extend the visual accuracy of decision maps by proposing additional techniques to suppress errors caused by projection distortions. Additionally, we propose ways to estimate and visually encode the distance-to-decision-boundary in decision maps, thereby enriching the conveyed information. We demonstrate our improvements and the insights that decision maps convey on several real-world datasets.
  • 关键词:machine learning; dimensionality reduction; image-based visualization machine learning ; dimensionality reduction ; image-based visualization
国家哲学社会科学文献中心版权所有