摘要:System simulation is used in many fields to help design, control or troubleshoot various industrial systems. Within the PUMP-HEAT H2020 project, it is applied to a combined cycles power plant, with innovative layouts that include heat pumps and thermal storage to un-tap combined cycle potential flexibility through low-CAPEX balance of plant innovations. Simcenter Amesim software is used to create dynamic models of all subsystems and their interactions and validate them from real life data for various purpose. Simple models of the Gas Turbine (GT), the Steam loop, the Heat Recovery Steam Generator (HRSG), the Heat Pump and the Thermal Energy storage with Phase Change material are created for Pre-Design and concept validation and then scaled to more precise design. Control software and hardware is validated by interfacing them with detailed models of the virtual plant by Model in the Loop (MiL), Software in the Loop (SiL) and Hardware in the Loop (HiL) technologies. Unforeseen steady state and transient behaviours of the powerplant can be virtually captured, analysed, understood and solved. The purpose of this paper is to introduce the associated methodologies applied in the PUMP-HEAT H2020 project and their respective results.
其他摘要:System simulation is used in many fields to help design, control or troubleshoot various industrial systems. Within the PUMP-HEAT H2020 project, it is applied to a combined cycles power plant, with innovative layouts that include heat pumps and thermal storage to un-tap combined cycle potential flexibility through low-CAPEX balance of plant innovations. Simcenter Amesim software is used to create dynamic models of all subsystems and their interactions and validate them from real life data for various purpose. Simple models of the Gas Turbine (GT), the Steam loop, the Heat Recovery Steam Generator (HRSG), the Heat Pump and the Thermal Energy storage with Phase Change material are created for Pre-Design and concept validation and then scaled to more precise design. Control software and hardware is validated by interfacing them with detailed models of the virtual plant by Model in the Loop (MiL), Software in the Loop (SiL) and Hardware in the Loop (HiL) technologies. Unforeseen steady state and transient behaviours of the powerplant can be virtually captured, analysed, understood and solved. The purpose of this paper is to introduce the associated methodologies applied in the PUMP-HEAT H2020 project and their respective results.