摘要:This work is devoted to an emulator test rig designed for experimental analysis on SOFC-based plants pressurised by a turbocharger. The utilization of a turbocharger for SOFC pressurization aims to reduce the machine costs, due to the large mass production of this component. This emulator rig is an essential plant to perform tests on the component integration, dynamic operations, control system development and prevention of risky operative conditions (e.g. surge). These are essential issues to be solved before developing expensive complete prototypes and the related commercialization. This experimental plant is based on a pressure vessel for emulating the thermal (combustor and inert ceramic material) and fluid dynamic (the volume) responses. The vessel pressurisation is obtained with a turbocharger, where the exhaust flow operating in the turbine powers the compressor. The plant is also equipped with a recuperator and with different valves for control and flexibility reasons (bleed, compressor/turbine bypass, and recuperator bypass). Preliminary experimental results are included in this work focusing attention on the turbocharger choice and on the component constraints. In details, these are the necessary experiments for choosing the suitable machine for the rig (with a good surge margin for this component coupling).
其他摘要:This work is devoted to an emulator test rig designed for experimental analysis on SOFC-based plants pressurised by a turbocharger. The utilization of a turbocharger for SOFC pressurization aims to reduce the machine costs, due to the large mass production of this component. This emulator rig is an essential plant to perform tests on the component integration, dynamic operations, control system development and prevention of risky operative conditions (e.g. surge). These are essential issues to be solved before developing expensive complete prototypes and the related commercialization. This experimental plant is based on a pressure vessel for emulating the thermal (combustor and inert ceramic material) and fluid dynamic (the volume) responses. The vessel pressurisation is obtained with a turbocharger, where the exhaust flow operating in the turbine powers the compressor. The plant is also equipped with a recuperator and with different valves for control and flexibility reasons (bleed, compressor/turbine bypass, and recuperator bypass). Preliminary experimental results are included in this work focusing attention on the turbocharger choice and on the component constraints. In details, these are the necessary experiments for choosing the suitable machine for the rig (with a good surge margin for this component coupling).