首页    期刊浏览 2025年02月20日 星期四
登录注册

文章基本信息

  • 标题:The evaluation of energy saving performance for the modular design centrifugal chiller
  • 本地全文:下载
  • 作者:YoonJei Hwang ; HanYoung Park ; SaiKee Oh
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-6
  • DOI:10.1051/e3sconf/201911101018
  • 出版社:EDP Sciences
  • 摘要:The modular concept design and operation of a centrifugal chiller offers the potential of increased cycle efficiency both at full load and off load conditions compared to the single compressor chiller. Modular chiller design is that a smaller, individual chiller can be connected with another, to make a larger capacity system. In the case of a tandem chiller, there would be faced to the higher initial cost or bigger foot print than a single compressor chiller at the same capacity because manufacturing cost, weight and size will be decreased according to increase of the refrigeration capacity. Therefore, it is obvious that a modular chiller have to be improved its efficiency first by both the operation algorithm and major cycle components. Eventually, the efficiency of the modular chiller achieves up to 6% at the full load condition after added series counter flow effect as much as 3% and more 3% added by improved aerodynamic design for impeller. Moreover, maximize off design potential through the capacity combination algorithm as the way of uneven loading makes 24% improved based on AHRI 550/590.
  • 其他摘要:The modular concept design and operation of a centrifugal chiller offers the potential of increased cycle efficiency both at full load and off load conditions compared to the single compressor chiller. Modular chiller design is that a smaller, individual chiller can be connected with another, to make a larger capacity system. In the case of a tandem chiller, there would be faced to the higher initial cost or bigger foot print than a single compressor chiller at the same capacity because manufacturing cost, weight and size will be decreased according to increase of the refrigeration capacity. Therefore, it is obvious that a modular chiller have to be improved its efficiency first by both the operation algorithm and major cycle components. Eventually, the efficiency of the modular chiller achieves up to 6% at the full load condition after added series counter flow effect as much as 3% and more 3% added by improved aerodynamic design for impeller. Moreover, maximize off design potential through the capacity combination algorithm as the way of uneven loading makes 24% improved based on AHRI 550/590.
国家哲学社会科学文献中心版权所有