首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Model of Thermal Plume above Cooking Gas Stove for Designing Ventilation
  • 本地全文:下载
  • 作者:Yuki Shimanuki ; Takashi Kurabuchi ; Yoshihiro Toriumi
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-5
  • DOI:10.1051/e3sconf/201911101030
  • 出版社:EDP Sciences
  • 摘要:A model of the thermal plume above a cooking gas stove using computational fluid dynamics (CFD) analysis was studied to predict the heat and vapor released during cooking. The combustion gas released from the burner installed in the gas stove was considered as air in which thermal energy was adjusted so that the thermal plume above the gas stove could be simulated. Therefore, the model could predict the thermal plume above the gas stove based on the capacity of the burner and pot size. For validating the simulated flow fields, the results of the velocity distributions above the gas stove calculated using CFD analysis models were compared with the results of the velocity distributions measured with particle image velocimetry (PIV). In conclusion, the analysis results were in good agreement with the measurement results. However, the velocity in the vertical direction calculated using CFD above the center of the burner was higher than the velocity measured using PIV along the axis from the center of the burner.
  • 其他摘要:A model of the thermal plume above a cooking gas stove using computational fluid dynamics (CFD) analysis was studied to predict the heat and vapor released during cooking. The combustion gas released from the burner installed in the gas stove was considered as air in which thermal energy was adjusted so that the thermal plume above the gas stove could be simulated. Therefore, the model could predict the thermal plume above the gas stove based on the capacity of the burner and pot size. For validating the simulated flow fields, the results of the velocity distributions above the gas stove calculated using CFD analysis models were compared with the results of the velocity distributions measured with particle image velocimetry (PIV). In conclusion, the analysis results were in good agreement with the measurement results. However, the velocity in the vertical direction calculated using CFD above the center of the burner was higher than the velocity measured using PIV along the axis from the center of the burner.
国家哲学社会科学文献中心版权所有