首页    期刊浏览 2024年09月01日 星期日
登录注册

文章基本信息

  • 标题:Effect of Desiccant Solution Temperature on Regeneration Performance of a Cross-Flow Regenerator
  • 本地全文:下载
  • 作者:Hye-Won Dong ; Hye-Jin Cho ; Jae-Weon Jeong
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-4
  • DOI:10.1051/e3sconf/201911101086
  • 出版社:EDP Sciences
  • 摘要:The purpose of this study is to investigate the effect of the inlet solution temperature on the performance of an adiabatic cross-flow regenerator using a lithium chloride (LiCl) aqueous solution, and to propose the optimal inlet solution temperature when operating this type of regenerator. In the experimental tests, the inlet solution temperature range varied from 50 to 90°C. The tests were carried out at 10°C intervals while the other conditions remained constant. The measurement parameters for the test were the inlet air dry-bulb temperature and humidity ratio, outlet air dry-bulb temperature and humidity ratio, air volume flow, solution density, and inlet and outlet solution temperatures. The regeneration effectiveness and coefficient of performance (COP) were selected to assess the heat and mass transfer performance of the cross-flow regenerator. The most important finding of this research was to determine the optimal solution inlet temperature in the cross-flow regenerator with the LiCl aqueous solution considering both the regenerator performance and energy consumption. The test results show that the recommended inlet solution temperature is 60°C, considering both regeneration effectiveness and COP.
  • 其他摘要:The purpose of this study is to investigate the effect of the inlet solution temperature on the performance of an adiabatic cross-flow regenerator using a lithium chloride (LiCl) aqueous solution, and to propose the optimal inlet solution temperature when operating this type of regenerator. In the experimental tests, the inlet solution temperature range varied from 50 to 90°C. The tests were carried out at 10°C intervals while the other conditions remained constant. The measurement parameters for the test were the inlet air dry-bulb temperature and humidity ratio, outlet air dry-bulb temperature and humidity ratio, air volume flow, solution density, and inlet and outlet solution temperatures. The regeneration effectiveness and coefficient of performance (COP) were selected to assess the heat and mass transfer performance of the cross-flow regenerator. The most important finding of this research was to determine the optimal solution inlet temperature in the cross-flow regenerator with the LiCl aqueous solution considering both the regenerator performance and energy consumption. The test results show that the recommended inlet solution temperature is 60°C, considering both regeneration effectiveness and COP.
国家哲学社会科学文献中心版权所有