摘要:In the literature, it is proved that grooved pipe models are thermally more efficient than the smooth pipe model. Different than the previous studies in which the groove dimensions are constant along the pipe, we study the effect of groove radius and the gap between adjacent grooves on the local heat transfer coefficients using computational fluid dynamics software. The grooved section consists of three sub-sections to see the effects of groove dimension in stream-wise flow direction. We vary the radius of circular grooves parametrically in each section to optimize the local groove radius throughout the pipe. We couple the fluid flow (1200
其他摘要:In the literature, it is proved that grooved pipe models are thermally more efficient than the smooth pipe model. Different than the previous studies in which the groove dimensions are constant along the pipe, we study the effect of groove radius and the gap between adjacent grooves on the local heat transfer coefficients using computational fluid dynamics software. The grooved section consists of three sub-sections to see the effects of groove dimension in stream-wise flow direction. We vary the radius of circular grooves parametrically in each section to optimize the local groove radius throughout the pipe. We couple the fluid flow (1200