摘要:Achieving high acoustic quality in meeting rooms is important for intelligibility therefore several measures are needed especially in reflective high volume rooms. This article tackles the method and the solution to renovate a complex enclosure. The study is divided in multiple stages: development of the 3D room model exported in ODEON acoustic software, validation of the actual condition of the room with measurements, proposing and analysing different acoustic ceiling tiles and finally selecting the optimum solution based on the cost and efficacy in reducing the reverberation time (RT). The measured RT was four times higher (3.45 sec at f=1kHz) than the recommended value (0.9 sec at f=1kHz). The numerical simulation results were in accordance with the experimental measurements with errors of less than 0.2 sec. Using the difference between the RT obtained with the acoustic measures and the optimum RT we were able to calculate an efficiency that was later on compared with the cost of the solution. As a conclusion, due to a large diversity of acoustic ceiling types with different prices and sound absorption coefficients it is important, especially for complex room geometries, to run simulations and to perform a cost-efficiency analysis.
其他摘要:Achieving high acoustic quality in meeting rooms is important for intelligibility therefore several measures are needed especially in reflective high volume rooms. This article tackles the method and the solution to renovate a complex enclosure. The study is divided in multiple stages: development of the 3D room model exported in ODEON acoustic software, validation of the actual condition of the room with measurements, proposing and analysing different acoustic ceiling tiles and finally selecting the optimum solution based on the cost and efficacy in reducing the reverberation time (RT). The measured RT was four times higher (3.45 sec at f=1kHz) than the recommended value (0.9 sec at f=1kHz). The numerical simulation results were in accordance with the experimental measurements with errors of less than 0.2 sec. Using the difference between the RT obtained with the acoustic measures and the optimum RT we were able to calculate an efficiency that was later on compared with the cost of the solution. As a conclusion, due to a large diversity of acoustic ceiling types with different prices and sound absorption coefficients it is important, especially for complex room geometries, to run simulations and to perform a cost-efficiency analysis.