首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Optimization of emission reducing energy retrofits in Finnish apartment buildings
  • 本地全文:下载
  • 作者:Janne Hirvonen ; Juha Jokisalo ; Juhani Heljo
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-6
  • DOI:10.1051/e3sconf/201911103002
  • 出版社:EDP Sciences
  • 摘要:This study examined the cost-optimality of energy renovation on Finnish apartment buildings of different ages, built according to different energy performance requirements. Multi-objective optimization was utilized to minimize both CO2 emissions and life cycle cost (LCC). IDA-ICE simulations were performed to obtain the hourly heating demand of the buildings. Four building age classes and three heating systems (district heating, exhaust air heat pump and ground-source heat pump) were separately optimized. With district heating, it was possible to reduce emissions by 11%, while also reducing LCC. With heat pumps cost-savings could be achieved while reducing emissions by over 49%. With maximal (not cost-effective) investments, emissions could be reduced by more than 70% in all examined cases. In all cases, the cheapest solutions included solar electricity and sewage heat recovery. In old buildings, window upgrades and additional roof insulation were cost-effective. In new buildings, demand-based ventilation was included in all optimal solutions.
  • 其他摘要:This study examined the cost-optimality of energy renovation on Finnish apartment buildings of different ages, built according to different energy performance requirements. Multi-objective optimization was utilized to minimize both CO2 emissions and life cycle cost (LCC). IDA-ICE simulations were performed to obtain the hourly heating demand of the buildings. Four building age classes and three heating systems (district heating, exhaust air heat pump and ground-source heat pump) were separately optimized. With district heating, it was possible to reduce emissions by 11%, while also reducing LCC. With heat pumps cost-savings could be achieved while reducing emissions by over 49%. With maximal (not cost-effective) investments, emissions could be reduced by more than 70% in all examined cases. In all cases, the cheapest solutions included solar electricity and sewage heat recovery. In old buildings, window upgrades and additional roof insulation were cost-effective. In new buildings, demand-based ventilation was included in all optimal solutions.
国家哲学社会科学文献中心版权所有