首页    期刊浏览 2025年05月26日 星期一
登录注册

文章基本信息

  • 标题:Monitoring of a Hemp Lime External Building Insulation
  • 本地全文:下载
  • 作者:Georges Costantine ; Chadi Maalouf ; Tala Moussa
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-6
  • DOI:10.1051/e3sconf/201911103046
  • 出版社:EDP Sciences
  • 摘要:In a context of promoting energy efficiency, building sector has undergone a notable evolution towards innovative construction insulation materials such as hemp concrete, in order to reduce buildings energy bills and environmental impact. Hemp-Concrete finds application as internal or external thermal insulator in wooden frame walls. In that context, a French building in Grand-Est region, employing Hemp-Concrete as an external insulator is selected and studied. An apartment is monitored for several months. Indoor temperatures, and relative humidities as well as external weather conditions are measured using sensors installed inside the apartment and a weather station placed at the building roof. Indoor comfort analysis shows satisfactory results according to ASHREA standards. Experimental approach is then coupled with a numerical validation at room scale using SPARK simulation tool. Investigations are conducted on indoor office air temperature and relative humidity. Results show a good agreement between numerical values and experimental measurements.
  • 其他摘要:In a context of promoting energy efficiency, building sector has undergone a notable evolution towards innovative construction insulation materials such as hemp concrete, in order to reduce buildings energy bills and environmental impact. Hemp-Concrete finds application as internal or external thermal insulator in wooden frame walls. In that context, a French building in Grand-Est region, employing Hemp-Concrete as an external insulator is selected and studied. An apartment is monitored for several months. Indoor temperatures, and relative humidities as well as external weather conditions are measured using sensors installed inside the apartment and a weather station placed at the building roof. Indoor comfort analysis shows satisfactory results according to ASHREA standards. Experimental approach is then coupled with a numerical validation at room scale using SPARK simulation tool. Investigations are conducted on indoor office air temperature and relative humidity. Results show a good agreement between numerical values and experimental measurements.
国家哲学社会科学文献中心版权所有