首页    期刊浏览 2024年09月20日 星期五
登录注册

文章基本信息

  • 标题:Study on environment conscious technologies in a super tall building: Evaluation of PV performance considering aerological climate
  • 本地全文:下载
  • 作者:Ryosuke Inomata ; Takashi Akimoto ; Daisuke Hatori
  • 期刊名称:E3S Web of Conferences
  • 印刷版ISSN:2267-1242
  • 电子版ISSN:2267-1242
  • 出版年度:2019
  • 卷号:111
  • 页码:1-8
  • DOI:10.1051/e3sconf/201911103058
  • 出版社:EDP Sciences
  • 摘要:In recent years, buildings have tended to be taller, and their energy potential is expected be used effectively . Photovoltaics is considered one of technologies affected by air temperature, outside air velocity, and solar radiation from the aerological climate of supertall buildings with a height of 390 m. The energy potential of the “height” of photovoltaic power generation systems is affected by two factors: aerological climate and shadows cast by surrounding buildings. Taking these effects into account, the predicted annual power generation amount was calculated. At 390 m above ground, it was confirmed that the power generation amount was greater than that on the ground, when considering the effectiveness of photovoltaic systems. Then, we calculated the predicted annual power generation amount on each wall and roof surface of a tall building with a height of 390 m above the ground. By evaluating the energy-saving effect of adopting photovoltaic systems, we evaluated the photovoltaic system using the wall surface from the viewpoint of the primary energy reduction and primary energy consumption of the building.
  • 其他摘要:In recent years, buildings have tended to be taller, and their energy potential is expected be used effectively . Photovoltaics is considered one of technologies affected by air temperature, outside air velocity, and solar radiation from the aerological climate of supertall buildings with a height of 390 m. The energy potential of the “height” of photovoltaic power generation systems is affected by two factors: aerological climate and shadows cast by surrounding buildings. Taking these effects into account, the predicted annual power generation amount was calculated. At 390 m above ground, it was confirmed that the power generation amount was greater than that on the ground, when considering the effectiveness of photovoltaic systems. Then, we calculated the predicted annual power generation amount on each wall and roof surface of a tall building with a height of 390 m above the ground. By evaluating the energy-saving effect of adopting photovoltaic systems, we evaluated the photovoltaic system using the wall surface from the viewpoint of the primary energy reduction and primary energy consumption of the building.
国家哲学社会科学文献中心版权所有